Synergistic Transcriptional and Post-Transcriptional Regulation of ESC Characteristics by Core Pluripotency Transcription Factors in Protein-Protein Interaction Networks

نویسندگان

  • Leijie Li
  • Liangcai Zhang
  • Guiyou Liu
  • Rennan Feng
  • Yongshuai Jiang
  • Lei Yang
  • Shihua Zhang
  • Mingzhi Liao
  • Jinlian Hua
چکیده

The molecular mechanism that maintains the pluripotency of embryonic stem cells (ESCs) is not well understood but may be reflected in complex biological networks. However, there have been few studies on the effects of transcriptional and post-transcriptional regulation during the development of ESCs from the perspective of computational systems biology. In this study, we analyzed the topological properties of the "core" pluripotency transcription factors (TFs) OCT4, SOX2 and NANOG in protein-protein interaction networks (PPINs). Further, we identified synergistic interactions between these TFs and microRNAs (miRNAs) in PPINs during ESC development. Results show that there were significant differences in centrality characters between TF-targets and non-TF-targets in PPINs. We also found that there was consistent regulation of multiple "core" pluripotency TFs. Based on the analysis of shortest path length, we found that the module properties were not only within the targets regulated by common or multiple "core" pluripotency TFs but also between the groups of targets regulated by different TFs. Finally, we identified synergistic regulation of these TFs and miRNAs. In summary, the synergistic effects of "core" pluripotency TFs and miRNAs were analyzed using computational methods in both human and mouse PPINs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nac1 promotes self-renewal of embryonic stem cells through direct transcriptional regulation of c-Myc

The pluripotency transcriptional network in embryonic stem cells (ESCs) is composed of distinct functional units including the core and Myc units. It is hoped that dissection of the cellular functions and interconnections of network factors will aid our understanding of ESC and cancer biology. Proteomic and genomic approaches have identified Nac1 as a member of the core pluripotency network. Ho...

متن کامل

REST Regulates Distinct Transcriptional Networks in Embryonic and Neural Stem Cells

The maintenance of pluripotency and specification of cellular lineages during embryonic development are controlled by transcriptional regulatory networks, which coordinate specific sets of genes through both activation and repression. The transcriptional repressor RE1-silencing transcription factor (REST) plays important but distinct regulatory roles in embryonic (ESC) and neural (NSC) stem cel...

متن کامل

RAD21 Cooperates with Pluripotency Transcription Factors in the Maintenance of Embryonic Stem Cell Identity

For self-renewal, embryonic stem cells (ESCs) require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 ...

متن کامل

Potential roles of 5´ UTR and 3´ UTR regions in post-trans-criptional regulation of mouse Oct4 gene in BMSC and P19 cells

Objective(s):OCT4 is a transcription factor required for pluripotency during early embryogenesis and the maintenance of identity of embryonic stem cells and pluripotent cells. Therefore, the effective expression regulation of this gene is highly critical. UTR regions are of great significance to gene regulation. In this study, we aimed to investigate the potential regulatory role played by 5´UT...

متن کامل

A competitive protein interaction network buffers Oct4-mediated differentiation to promote pluripotency in embryonic stem cells

Pluripotency in embryonic stem cells is maintained through the activity of a small set of transcription factors centred around Oct4 and Nanog, which control the expression of 'self-renewal' and 'differentiation' genes. Here, we combine single-cell quantitative immunofluorescence microscopy and gene expression analysis, together with theoretical modelling, to investigate how the activity of thos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014